Finding best operational conditions of PEM fuel cell using adaptive neuro-fuzzy inference system and metaheuristics
نویسندگان
چکیده
The optimum output power of the proton exchange membrane fuel cell (PEMFC) is dependent on operational conditions such as pressure, oxidant flow rate, and rate. Therefore, aim this paper to enhance performance PEMFC by identifying optimal operating parameters PEMFC. proposed strategy includes both modelling optimization stages. An adaptive network-based fuzzy inference system (ANFIS) utilized in creating model based experimental datasets. Whereas, grey wolf optimizer (GWO) used identify best values rate corresponding maximum obtained results demonstrated superiority integration between ANIFS GWO. Regarding accuracy, RMSE are 0.017 well 0.0262 respectively for treating testing phases. coefficient determination 0.9921 0.9622 coupled with 1.0 bar, 0.8 117.03 mL/min, 150.0 mL/min Thanks ANFIS-based GWO, has been increased from 0.587 W using work 0.92 W.
منابع مشابه
Implementation of Adaptive Neuro-Fuzzy Inference System (Anfis) for Performance Prediction of Fuel Cell Parameters
Fuel cells are potential candidates for storing energy in many applications; however, their implementation is limited due to poor efficiency and high initial and operating costs. The purpose of this research is to find the most influential fuel cell parameters by applying the adaptive neuro-fuzzy inference system (ANFIS). The ANFIS method is implemented to select highly influential parame...
متن کاملmodeling job performance using optimized adaptive neuro-fuzzy inference system
using current employee performance data to predict the future behavior of the applicants is an interesting area which can broaden new horizons of knowledge lay in the organization. because of inherent ambiguity and uncertainty, cognitive limitations of the human mind make unknown behaviors of very complex systems difficult to predict. as a consequence, it is necessary to model the imprecise mod...
متن کاملBreast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm
Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used. First,...
متن کاملPrediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system
Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...
متن کاملModeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Reports
سال: 2022
ISSN: ['2352-4847']
DOI: https://doi.org/10.1016/j.egyr.2022.04.061